Fast Tuning of Double Fano Resonance Using A Phase-Change Metamaterial Under Low Power Intensity

نویسندگان

  • Tun Cao
  • Chenwei Wei
  • Robert E. Simpson
  • Lei Zhang
  • Martin J. Cryan
چکیده

In this work, we numerically demonstrate an all-optical tunable Fano resonance in a fishnet metamaterial(MM) based on a metal/phase-change material(PCM)/metal multilayer. We show that the displacement of the elliptical nanoholes from their centers can split the single Fano resonance (FR) into a double FR, exhibiting higher quality factors. The tri-layer fishnet MMs with broken symmetry accomplishes a wide tuning range in the mid-infrared(M-IR) regime by switching between the amorphous and crystalline states of the PCM (Ge2Sb2Te5). A photothermal model is used to study the temporal variation of the temperature of the Ge2Sb2Te5 film to show the potential for switching the phase of Ge2Sb2Te5 by optical heating. Generation of the tunable double FR in this asymmetric structure presents clear advantages as it possesses a fast tuning time of 0.36 ns, a low pump light intensity of 9.6 μW/μm(2), and a large tunable wavelength range between 2124 nm and 3028 nm. The optically fast tuning of double FRs using phase change metamaterials(PCMMs) may have potential applications in active multiple-wavelength nanodevices in the M-IR region.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Emission wavelength tuning of fluorescence by fine structural control of optical metamaterials with Fano resonance

We demonstrated fine emission wavelength tuning of quantum dot (QD) fluorescence by fine structural control of optical metamaterials with Fano resonance. An asymmetric-double-bar (ADB), which was composed of only two bars with slightly different bar lengths, was used to obtain Fano resonance in the optical region. By changing the short bar length of ADB structures with high dimensional accuracy...

متن کامل

Nonlinear Metamaterial and Plasmonic Structures

Theory of nonlinear metamaterials [1] predicted that the hysteresis-type dependence of magnetic permeability on the field intensity may allow dramatic changes of the material properties. As the first step towards creating tunable nonlinear metamaterials we studied dynamic tunability of the magnetic resonance of a single nonlinear split-ring resonator [2] and revealed different tuning regimes of...

متن کامل

Tailoring the negative-refractive-index metamaterials composed of semiconductor-metal-semiconductor gold ring/disk cavity heptamers to support strong Fano resonances in the visible spectrum.

In this study, we investigated numerically the plasmon response of a planar negative-index metamaterial composed of symmetric molecular orientations of Au ring/disk nanocavities in a heptamer cluster. Using the plasmon hybridization theory and considering the optical response of an individual nanocluster, we determined the accurate geometrical sizes for a ring/disk nanocavity heptamer. It is sh...

متن کامل

Numerical study of achiral phase-change metamaterials for ultrafast tuning of giant circular conversion dichroism

Control of the polarization of light is highly desirable for detection of material's chirality since biomolecules have vibrational modes in the optical region. Here, we report an ultrafast tuning of pronounced circular conversion dichroism (CCD) in the mid-infrared (M-IR) region, using an achiral phase change metamaterial (PCMM). Our structure consists of an array of Au squares separated from a...

متن کامل

Sharp Fano resonances in THz metamaterials.

We report on the occurrence of sharp Fano resonances in planar terahertz metamaterials by introducing a weak asymmetry in a two gap split ring resonator. As the structural symmetry of the metamaterial is broken a Fano resonance evolves in the low-frequency flank of the symmetric fundamental dipole mode resonance. This Fano resonance can have much higher Q factors than that known from single gap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014